249 research outputs found

    HIV-associated progressive multifocal leukoencephalopathy. Current perspectives

    Get PDF
    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system, caused by the polyomavirus JC and occurring almost exclusively in the context of severe immune depression. AIDS represents the most common predisposing condition for PML development. Antiretroviral treatment has reduced PML incidence in HIV-infected subjects, but the disease remains a severe and life-threatening complication of AIDS, considering thus far the lack of an effective anti-JC virus (JCV) direct-acting antiviral drug. In the last decade, the use of monoclonal antibodies for treating immune-based diseases evidenced new predisposing conditions for PML development, promoting a renewed interest in PML pathogenesis. In this article, we review the current knowledge on JCV epidemiology and AIDS-associated PML incidence, JCV viral cycle, pathogenesis, and the interplay with HIV infection. We give an updated overview of diagnostic and prognostic tools available for PML diagnosis and describe past and current therapeutic approaches, including new strategies for PML cure

    A detailed study of rainfall in the Roman area in the decade 1992–2001

    Get PDF
    A study of the rainfall regime in the Roman area over the decade 1992-2001 has been undertaken on using tipping pluviometers data, coming from 23 climatic stations located in Rome and in its surroundings. The time response of the instruments and the automatic acquisition system ensure a resolution of less than 1 minute, thus offering the possibility of an accurate evaluation of intense and extreme events. The mean yearly rainfall over the whole decade has been determined for each station, obtaining values between 682 and 870mm/year, with a geographical average of 771 and a standard deviation of 47. A study of the rainfall distribution within the 48 half-hours of the day has been carried out in order to ascertain whether preferred times for rain events exist. The analysis has evidenced that this is the case, with high rainfall rates mostly occurring in the late morning and low rates in the late night. Typical values of the maximum 30-min rainfall ever recorded at any given station oscillate between 25 and almost 60 mm. A separate analysis of rainy and dry days has been carried out on studying the statistics of the time delays between two successive tips of the pluviometer. This allowed a characterization of the intense rains as well as of the droughts: the resulting histograms show the existence of a bimodal distribution explained in terms of two kinds of rain events, intense summer showers and drizzles distributed over the rest of the year. As for the droughts, the longest durations appear to range from one to about seven months. On confining the analysis to the rainy days only, the rain intensity data for each station has been plotted and fitted with a Weibull distribution. The corresponding Weibull parameters, while gathering around common mean values, do not show any recognizable pattern when regressed, for instance, versus the altitude of the station or the distance from the coastline. Last, the likelihood that a day of the year, taken at random, be a rainy day or not has been computed for each station yielding probability values ranging from 0.18 to 0.22

    a potential solution to some of the challenges of modern biomedical research

    Get PDF
    Background Innovations in technology have contributed to rapid changes in the way that modern biomedical research is carried out. Researchers are increasingly required to endorse adaptive and flexible approaches to accommodate these innovations and comply with ethical, legal and regulatory requirements. This paper explores how Dynamic Consent may provide solutions to address challenges encountered when researchers invite individuals to participate in research and follow them up over time in a continuously changing environment. Methods An interdisciplinary workshop jointly organised by the University of Oxford and the COST Action CHIP ME gathered clinicians, researchers, ethicists, lawyers, research participants and patient representatives to discuss experiences of using Dynamic Consent, and how such use may facilitate the conduct of specific research tasks. The data collected during the workshop were analysed using a content analysis approach. Results Dynamic Consent can provide practical, sustainable and future-proof solutions to challenges related to participant recruitment, the attainment of informed consent, participant retention and consent management, and may bring economic efficiencies. Conclusions Dynamic Consent offers opportunities for ongoing communication between researchers and research participants that can positively impact research. Dynamic Consent supports inter-sector, cross- border approaches and large scale data-sharing. Whilst it is relatively easy to set up and maintain, its implementation will require that researchers re- consider their relationship with research participants and adopt new procedures

    Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges

    Get PDF
    Important operational changes that have gradually been assimilated and new approaches that are developing as part of the movement toward sustainable intensive aquaculture production systems are presented via historical, current, and future perspectives. Improved environmental and economic sustainability based on increased efficiency of production continues to be realized. As a result, aquaculture continues to reduce its carbon footprint through reduced greenhouse gas emissions. Reduced use of freshwater and land resources per unit of production, improved feed management practices as well as increased knowledge of nutrient requirements, effective feed ingredients and additives, domestication of species, and new farming practices are now being applied or evaluated. Successful expansion into culture of marine species, both off and on shore, offers the potential of substantial increases in sustainable intensive aquaculture production combined with integrative efforts to increase efficiency will principally contribute to satisfying the increasing global demand for protein and food security needs

    Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19)

    Get PDF
    SARS-CoV-2 is associated with a 3.4% mortality rate in patients with severe disease. The pathogenesis of severe cases remains unknown. We performed an in-depth prospective analysis of immune and inflammation markers in two patients with severe COVID-19 disease from presentation to convalescence. Peripheral blood from 18 SARS-CoV-2-infected patients, 9 with severe and 9 with mild COVID-19 disease, was obtained at admission and analyzed for T-cell activation profile, myeloid-derived suppressor cells (MDSCs) and cytokine profiles. MDSC functionality was tested in vitro. In four severe and in four mild patients, a longitudinal analysis was performed daily from the day of admission to the early convalescent phase. Early after admission severe patients showed neutrophilia, lymphopenia, increase in effector T cells, a persisting higher expression of CD95 on T cells, higher serum concentration of IL-6 and TGF-β, and a cytotoxic profile of NK and T cells compared with mild patients, suggesting a highly engaged immune response. Massive expansion of MDSCs was observed, up to 90% of total circulating mononuclear cells in patients with severe disease, and up to 25% in the patients with mild disease; the frequency decreasing with recovery. MDSCs suppressed T-cell functions, dampening excessive immune response. MDSCs decline at convalescent phase was associated to a reduction in TGF-β and to an increase of inflammatory cytokines in plasma samples. Substantial expansion of suppressor cells is seen in patients with severe COVID-19. Further studies are required to define their roles in reducing the excessive activation/inflammation, protection, influencing disease progression, potential to serve as biomarkers of disease severity, and new targets for immune and host-directed therapeutic approaches

    Kinetic Pathway of Pyrophosphorolysis by a Retrotransposon Reverse Transcriptase

    Get PDF
    DNA and RNA polymerases use a common phosphoryl transfer mechanism for base addition that requires two or three acidic amino acid residues at their active sites. We previously showed, for the reverse transcriptase (RT) encoded by the yeast retrotransposon Ty1, that one of the three conserved active site aspartates (D211) can be substituted by asparagine and still retain in vitro polymerase activity, although in vivo transposition is lost. Transposition is partially restored by second site suppressor mutations in the RNAse H domain. The novel properties of this amino acid substitution led us to express the WT and D211N mutant enzymes, and study their pre-steady state kinetic parameters. We found that the kpol was reduced by a factor of 223 in the mutant, although the Kd for nucleotide binding was unaltered. Further, the mutant enzyme had a marked preference for Mn2+ over Mg2+. To better understand the functions of this residue within the Ty1 RT active site, we have now examined the in vitro properties of WT and D211N mutant Ty1 RTs in carrying out pyrophosphorolysis, the reverse reaction to polymerization, where pyrophosphate is the substrate and dNTPs are the product. We find that pyrophosphorolysis is efficient only when the base-paired primer template region is >14 bases, and that activity increases when the primer end is blunt-ended or recessed by only a few bases. Using pre-steady state kinetic analysis, we find that the rate of pyrophosphorolysis (kpyro) in the D211N mutant is nearly 320 fold lower than the WT enzyme, and that the mutant enzyme has an ∼170 fold lower apparent Kd for pyrophosphate. These findings indicate that subtle substrate differences can strongly affect the enzyme's ability to properly position the primer-end to carry out pyrophosphorolysis. Further the kinetic data suggests that the D211 residue has a role in pyrophosphate binding and release, which could affect polymerase translocation, and help explain the D211N mutant's transposition defect

    The ε3 and ε4 Alleles of Human APOE Differentially Affect Tau Phosphorylation in Hyperinsulinemic and Pioglitazone Treated Mice

    Get PDF
    Impaired insulin signalling is increasingly thought to contribute to Alzheimer's disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment.Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle.All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone
    • …
    corecore